49 research outputs found

    Thinking up an original scientific research project

    Get PDF
    Writing a research proposal is not a simple task if we wish-and we do usually wish!-to succeed in putting our project into practice. Three different developing stages should indeed be clearly borne in mind from the very beginning. The first stage requires you (the applicant) "To have your own idea", thus demanding novelty and originality in the way of thinking; the second has the goal "To get your idea funded", thus entailing project feasibility and persuasion in the way in which the idea is presented; and the third is "To run the project", thus requiring resources and local implementation. The first step-i.e., to think out of the box, to be different, to be unique-is the most difficult task, the challenging point in the elaboration process. The importance of reading scientific literature, being aware of competitors and developing original thoughts will be discussed. And communication-from brain to brain, from yours to proposal reviewers' mind-will unavoidably emerge as the voussoir, the wedge-shaped or tapered stone used to construct the whole project. In this context, the three pillars of the Aristotle's Rhetorical Triangle will be discussed: ethos (credibility), logos (reasoning) and pathos (empathy). It will end with a basic, central principle as "Have the brain full up with the whole story before writing any single word on any blank piece of paper"

    Ten years of FEBS Open Bio

    Get PDF
    This month, FEBS Open Bio celebrates its 10th birthday. To celebrate the journal's first decade, we present this special anniversary issue, comprised of editorials, reviews, and research articles especially commissioned for the occasion. In this introductory editorial, we invite the reader to join us as we reminisce over the journal's past, celebrate its present, and look forward to its future

    Ensuring image integrity in the digital age

    Get PDF
    FEBS Open Bio and our fellow FEBS Press journals have a strong commitment to maintaining the integrity of the scientific literature. The life sciences, in particular, are suffering from an ongoing reproducibility crisis, and this may in part be fuelled by mistakes, manipulation or outright fabrication of the presented data. We were recently made aware of several articles published in FEBS Open Bio that appear to contain full or partial duplications of images from other published articles in a different scientific context. In most of these cases, the duplications were taken from previously published papers. After thorough investigation and subsequent discussion within FEBS Press and with Wiley's Integrity in Publishing Group, we have retracted most of these articles

    Entering the second decade: FEBS Open Bio in 2022

    Get PDF
    FEBS Open Bio continues to go from strength to strength, with 2021 perhaps marking its most exciting year. In this Editorial, the Editor-in-Chief Miguel A. De la Rosa looks back at all the new developments of 2021 and forecasts the outlook for 2022

    Carbon dioxide-mediated decomposition of hydrogen peroxide in alkaline solutions

    Get PDF
    Rapid hydrogen peroxide decomposition in aerated alkaline solutions is described, the maximum rate being attained at pH values between 11.5 and 11.7, where the peroxide (pKa = 11.7) is ca. 50% unprotonated. The reaction proceeds with the release of protons and is strictly dependent upon the continuous presence of carbon dioxide, but not of carbonate anions, in the peroxide solutions. The following two-step mechanism is proposed: (1) formation of percarbonic acid (H2CO4 ) by condensation of C02 with the undissociated peroxide (H202 ) and (2) reduction of the acid by perhydroxyl anions (HO;)

    Cytochrome c signalosome in mitochondria

    Get PDF
    Cytochrome c delicately tilts the balance between cell life (respiration) and cell death (apoptosis). Whereas cell life is governed by transient electron transfer interactions of cytochrome c inside the mitochondria, the cytoplasmic adducts of cytochrome c that lead to cell death are amazingly stable. Interestingly, the contacts of cytochrome c with its counterparts shift from the area surrounding the heme crevice for the redox complexes to the opposite molecule side when the electron flow is not necessary. The cytochrome c signalosome shows a higher level of regulation by post-translational modifications—nitration and phosphorylation—of the hemeprotein. Understanding protein interfaces, as well as protein modifications, would puzzle the mitochondrial cytochrome c-controlled pathways out and enable the design of novel drugs to silence the action of pro-survival and pro-apoptotic partners of cytochrome c.Spanish Ministry of Science and Innovation BFU2009-07190Andalusian Government BIO198 P08-CVI-387

    Cytochrome c: Surfing Off of the Mitochondrial Membrane on the Tops of Complexes III and IV

    Get PDF
    The proper arrangement of protein components within the respiratory electron transport chain is nowadays a matter of intense debate, since altering it leads to cell aging and other related pathologies. Here, we discuss three current views-the so-called solid, fluid and plasticity models-which describe the organization of the main membrane-embedded mitochondrial protein complexes and the key elements that regulate and/or facilitate supercomplex assembly. The soluble electron carrier cytochrome c has recently emerged as an essential factor in the assembly and function of respiratory supercomplexes. In fact, a 'restricted diffusion pathway' mechanism for electron transfer between complexes III and IV has been proposed based on the secondary, distal binding sites for cytochrome c at its two membrane partners recently discovered. This channeling pathway facilitates the surfing of cytochrome c on both respiratory complexes, thereby tuning the efficiency of oxidative phosphorylation and diminishing the production of reactive oxygen species. The well-documented post-translational modifications of cytochrome c could further contribute to the rapid adjustment of electron flow in response to changing cellular conditions.Spanish Ministry of Economy and Competitiveness (BFU2015-71017/BMC MINECO/FEDER and PGC2018-096049-B-I00 BIO/BMC MICINN/FEDER, EU

    Long distance electron transfer through the aqueous solution between redox partner proteins

    Get PDF
    Despite the importance of electron transfer between redox proteins in photosynthesis and respiration, the inter-protein electron transfer rate between redox partner proteins has never been measured as a function of their separation in aqueous solution. Here, we use electrochemical tunneling spectroscopy to show that the current between two protein partners decays along more than 10 nm in the solution. Molecular dynamics simulations reveal a reduced ionic density and extended electric field in the volume confined between the proteins. The distance-decay factor and the calculated local barrier for electron transfer are regulated by the electrochemical potential applied to the proteins. Redox partners could use electrochemically gated, long distance electron transfer through the solution in order to conciliate high specificity with weak binding, thus keeping high turnover rates in the crowded environment of cells.España, MINECO BFU2015-71017-P/España, Gobierno de Andalucía (BIO198)Comisión de Universidades e Investigación del Departamento de Innovación, Universidades y Empresa de la Generalitat de Catalunya.(2017 SGR 1442, 2014 SGR 1442, and 2017 SGR 1189

    Site-directed Mutagenesis of Cytochromec 6 from Synechocystissp. PCC 6803

    Get PDF
    This paper reports the first site-directed mutagenesis analysis of any cytochrome c 6, a heme protein that performs the same function as the copper-protein plastocyanin in the electron transport chain of photosynthetic organisms. Photosystem I reduction by the mutants of cytochromec 6 from the cyanobacteriumSynechocystis sp. PCC 6803 has been studied by laser flash absorption spectroscopy. Their kinetic efficiency and thermodynamic properties have been compared with those of plastocyanin mutants from the same organism. Such a comparative study reveals that aspartates at positions 70 and 72 in cytochrome c 6 are located in an acidic patch that may be isofunctional with the well known “south-east” patch of plastocyanin. Calculations of surface electrostatic potential distribution in the mutants of cytochromec 6 and plastocyanin indicate that the changes in protein reactivity depend on the surface electrostatic potential pattern rather than on the net charge modification induced by mutagenesis. Phe-64, which is close to the heme group and may be the counterpart of Tyr-83 in plastocyanin, does not appear to be involved in the electron transfer to photosystem I. In contrast, Arg-67, which is at the edge of the cytochrome c 6 acidic area, seems to be crucial for the interaction with the reaction center.Dirección General de Investigación Científica y Técnica (DGICYT, Grant PB96-1381)European Union (EU, CHRX-CT94-0540 and ERB-FMRX-CT98-0218)Junta de Andalucía (PAI, CVI-0198

    Oxidizing Side of the Cyanobacterial Photosystem I

    Get PDF
    Photosystem I (PSI) interacts with plastocyanin or cytochrome c 6 on the luminal side. To identify sites of interaction between plastocyanin/cytochromec 6 and the PSI core, site-directed mutations were generated in the luminal J loop of the PsaB protein fromSynechocystis sp. PCC 6803. The eight mutant strains differed in their photoautotrophic growth. Western blotting with subunit-specific antibodies indicated that the mutations affected the PSI level in the thylakoid membranes. PSI proteins could not be detected in the S600R/G601C/N602I, N609K/S610C/T611I, and M614I/G615C/W616A mutant membranes. The other mutant strains contained different levels of PSI proteins. Among the mutant strains that contained PSI proteins, the H595C/L596I, Q627H/L628C/I629S, and N638C/N639S mutants showed similar levels of PSI-mediated electron transfer activity when either cytochrome c 6 or an artificial electron donor was used. In contrast, cytochromec 6 could not function as an electron donor to the W622C/A623R mutant, even though the PSI activity mediated by an artificial electron donor was detected in this mutant. Thus, the W622C/A623R mutation affected the interaction of the PSI complex with cytochrome c 6. Biotin-maleimide modification of the mutant PSI complexes indicated that His-595, Trp-622, Leu-628, Tyr-632, and Asn-638 in wild-type PsaB may be exposed on the surface of the PSI complex. The results presented here demonstrate the role of an extramembrane loop of a PSI core protein in the interaction with soluble electron donor proteins
    corecore